
Guidelines for PECC-Activities

Items Tasks PECC Category

STAGE 0: Preparation

(0.1) Structure

of the coding

course

0.1.1: Choose your target group

 Gender, age (12-15 years old)

 In or outside the classroom (after school program)

 Youth center, coding camps, etc.

0.1.2: Determine the available units

Recommendation:

 Instruction (the Starter, 1-2 units)

 Game design (The Main Learning, 2-4 units)

 Coding (The Main Learning, 4-8 units)

 Presentation (The Closing, 1-2 units)

0.1.3: Choose suitable tools

For coding:

 Visual-based coding (e.g., Pocket Code, Scratch, Snap)

or robotics (e.g., Lego Mindstorms)

 Text-based coding (e.g., Text Editors, Eclipse, Android

Studio, etc.)

For creating game assets (how they are produced)*

 Artwork (by hand)

 Tools, e.g. Photoshop, InDesign

 Assets from the internet (be aware of copyright issues!)

 Personal photographs

 Use assets from available media libraries

 Sound design: personal records, internet

0.1.4: Define the learning goal(s) or a general goal for games

A (learning) goal consists of three parts: action, content, and

condition.

The (learning) goals need to be defined according to

(a) Learning goals/objective of the curriculum subject in

which coding is applied

Example: “Add 5 questions about the `French

Revolution’ to your game”.

(b) Learning goals for game design/coding

Example: “Integrate min. 2 objects designed by yourself

(artwork)”

0.1.5 Choose the engagement level *

Group constellations (homogeneous/heterogeneous teams)

(1) small groups (2-5)

(2) pair work

(3) work individually (but all working on the same learning

goal)

Coding –

Structure

Creativity –

Structure

Coding –

Teaching

Approach

(0.2) Prepare

your material

1.1.4 Create tailored challenges *

(a) Template/Framework: students start with a pre-coded

game and to add code/assets to finalize it (also allows

customization, etc.)

(b) Learning-by-doing: provide tutorials, helpful

material/prepared functions, guidance

1.1.5 Set-up & Prepare

 Presentation, if needed

 Print storyboards (see storyboard)

Engagement

–

Collaboration

Coding –

Structure

 Handicraft items for “brick on paper” activity (scissors,

tape, paper, etc.)

 Template/framework program, example games to

present, etc.

 Setup platforms/tools (accounts, installation, charge

mobile devices)

 Other (room, date, time, equipment e.g., projector, etc.)

STAGE 1: Introduction

(1.1) Create a

realistic picture

of STEM jobs

1.1.1 Create a safe environment *

Allow/ask questions, spark discussions

In small groups/with the whole class:

 Which technical professions do you know?

 Which study/training do you need to acquire technical

skills?

 What does a computer scientist do? Do you know people

who are working in those fields?

 Who already has experience in coding? Which tools did

you use for coding?

 What is coding? What is an algorithm?

 Which programming languages do you know?

1.1.2 Visit companies, invite role models *

Be a role model/mentor on your own!

 Asking for resources to promote the improvement of

technological knowledge (companies, universities)

 Establishing direct communication between STEM

professionals and students

 Invite STEM professionals (role models) from the

industry/university

 Tell about role models and famous women who have

succeed in computer science (e.g., Ada Lovelance)

 Inspire students for STEM

 Address the issue: Why do you think there are fewer

women in IT than men?

1.1.3 Understand the learner’s playing behavior *

 What kind of games do you play?

 What makes you play games?

 What hinders you from playing games?

Engagement

–

Warm up

Playing - Play

(1.2) Provide a

convenient

starting point

1.2.1 Design Learning: What is/How do _________?

Students are not familiar with “coding vocabulary” and practices.

The most important terms are (IT Glossary)

 Loops, conditions, variables, data types, objects,

pseudocode, conditionals, function, iteration, parameter,

broadcast messages, etc.

It is not necessary to explain all of them, ask them if they are

familiar with these concepts. Explain why they are needed (e.g., for

creating a score, you need to define a variable; in order for objects

to interact, you need messages).

The answer is: Engagement!

(a) integrate important functionalities in the example

program (next step), so students can see what they

are needed for

(b) prepare a presentation with showcases/example

programs

(c) do “Unplugged Coding”, e.g.

Engagement

–

Collaboration

Coding –

Structure

o “Program” a classmate like a robot (start/end

point)

o Paint “instructions”

o Pack a rucksack with “variables”

o Send “broadcasts” through the classroom

1.2.1 Introduce the tools or let students explore *

 Show the UI, menu, and structure of the tool/platform

 Show them where to find help, tutorials, useful

forums/groups, demos (e.g., on YouTube)

Coding: Starter program:

(1) Create a collaborative program with the whole class (e.g.

on the projector) which covers important steps (about the

program they are going to create on their own): e.g., add

an object, movement, interaction, etc.

(a) One or two students come to the front of the class

and add one small but meaningful step to the game

(class is allowed to help)

(b) Ask students for the next step while programming

(2) Let students program a game (a small starter task) with

the help of tutorials (guides, step-to-step) and let them

add enhancements, e.g., add an animation, add a sound,

score, etc.

1.2.2 Don’t forget the fun! - Let students PLAY *

(a) Show students example games

(b) Let them play games on their own (i.e. featured games,

best practice)

Coding –

Personal

Experiences

Playing - Play

STAGE 2: Story & Game Design

(2.1) Foster self-

directed learning

to create

personal

experiences

2.1.1 Bring “Freedom of Choice” to your course to create a

sense of ownership *

 Designing of personal games from scratch:

(a) Don’t restrict the game design at all, let them choose

game elements, e.g. story, genre, theme, goal,

MDAs, assets

(b) Define a frame, e.g., use of certain properties, genre,

design elements, or MDAs

 Use of templates: allow customization, personalization,

and enhancements

2.1.2 Let’s get it started! *

 Describe the activity: task, structure, units –> strive for

mutual understanding

 Explain the (learning) goal: define a sub-goal for each

unit

 Support the formation of homogeneous groups

Playing

Engagement

Creativity

Coding

Coding –

Coding

(2.2) Bring in the

gaming/design

elements

2.2.1 Give students a storyboard
A storyboard (storyboard) could help students in their game

design process, the template refers to the “Shape of a game”

 Ask students to give their game a name

 Let them tell a story

2.2.2 Classify the game: genre/theme/goal *

 Choose a genre:

o Action (platform/jump’n’run, shooter)

o Adventure (RPG, text adventure/storytelling)

o Puzzle (skill game)

o Quiz

o Simulation (racing, real-life)

Playing –

Game Design

o Strategy

 Choose a theme:

o Criminal/detective stories,

o Science fiction, fantasy, comic

o Romance

o Nature, animals, sports

o Future, space

o Realistic

o Horror, etc.

 Choose a goal:

o Capture/destroy/avoid e.g., items or opponents

o Territorial/knowledge acquisition, collection,

e.g., items

o Solve a puzzle or a crime

o Chase/racing/escape something or somebody

o Spatial alignment: positioning of elements

o Build a character, resources

o Negation of another goal: games end if the play

act against the rules

o No goal (e.g., storytelling, retelling, animations)

2.2.3 Who is the “star” in the game? *

 Main characters, e.g., animals, fantasy figures,

man/woman, boy/girl, items, transport, food, etc.

 Side characters

 Name all the characters to promote ownership

 Background (i.e., theme)

 Interactions between characters and their level of control

2.2.4 Bring the games to LIFE (use MDA) *

Mechanics Dynamics

 Points/rewards: e.g., earning points/currency to levelling

up (reward completion of activities) or for a high-score

list

 Status/levels: thresholds or milestones that a player must

achieve in the progression.

 Challenges/achievements: tasks or actions users have to

perform to be awarded

 Virtual goods/self-expression: non-physical, intangible

objects the user can, for example, exchange in virtual

shops to customize their avatar

 Leaderboards/competition: scores and rankings of users

relative to others (e.g., high-score list)

 Notifications: provide feedback for the user

 Timer: set a time limit for actions

Aesthetics: provide visual, audio, and fantasy elements

 Sensation: create something completely unfamiliar

 Fantasy: build imaginary worlds

 Narrative: tell a story

 Challenge: to master something

 Fellowship: the player is part of a community

 Discovery: the players need to explore

 Expression: use individual creativity

2.2.5 Get the games in shape! “Ceremony”

 Title screen: name of the game

 Introduction screen: explain the goals and rules

(mechanics) of the game

 Game screen(s): 1-n levels

 End screen: game over or win screen

(2.3) Let

students be

creative and

express

themselves

2.3.1 Foster students’ sense of ownership -

It’s their game! *

 Also within templates/frameworks!

 Edit/change, customize and personalize: assets,

characters, looks, backgrounds and screens (shape of a

game)

 Add sounds, record media

 Suggestions:

o Use art lesson for design session

o Have group members already started to code?

No problem: Let them change roles after a

while!

Creativity –

Freedom of

Choice

Stage 3 – Coding

(3.1) Now let’s

start coding!

3.1.1 Tinkering activities: First … on paper!

 Pseudocode: students should think of commands,

variables, etc. they will need for their games

 Hands-on/bricks on paper: print out the bricks, students

add them to their objects

o Where to place the objects?

o Which size they are?

o How I will control my objects?

o How and who should interact/communicate

with each other?

o How will I use MDA in my game?

o Where to define my variables?

3.1.2 Ready…Set…Code! *

 Students should try it out and see what happen, e.g., If

something does not work like expected: change it

 Consider failure as part of the learning process

 Do not show/explain all at once: break down the content

into sub-goals for every units

3.1.3 Repeat, focus, and foster collaboration *

At the beginning of every unit:

 Let students repeat what happened in the last unit and

present sub-goals for today’s unit.

 Ask: What was difficult? What was easy? Open

questions?

 Observe the teamwork: enable students to assume

different identities and roles (leader, designer,

programmer, etc.).

 Build confidence:

o Praise students, provide confirmation

o Celebrate “Aha!-effects”

o Provide recognition of work done

o Balance extrinsic and intrinsic motivators

 Support collaboration and communication during the

whole game production process

 Foster originality and self-expression

o What else can you add to the game?

o Are you satisfied with your game?

o Is anything missing?

o Is there some room for improvement?

 Students feel pride/self-efficiency!

 Check the state of the work:

o Who needs more time?

o Provide extra tasks for the faster ones.

Coding –

Personal

Experiences

Engagement

–

Collaboration

Creativity –

Freedom of

Choice

Hints: per unit at 45 minutes (1) (2) (3): steps (a) (b) (c): choose

Legend: * gender sensitive only for schools optional only if coding from

scratch

(3.2) Don’t forget

the gender

3.2.1 Be gender-sensitive/aware *

 Be sure your learning materials are free of gender

stereotypes (example games, learning goals,

templates/frameworks).

 Use a gender sensitive language, e.g., do not foster male

masculinity in tech (e.g., only refer to a technician as

HE), consider that language forms pictures; so make

women visible and audible, use both definitions (e.g., in

German) or more neutral forms if they exist.

 Use gender sensible language and imaginary for slides,

material, and examples.

 Praise students the right way: not for spent effort/time,

but for their knowledge.

 Provide a stress-free and anxiety-free working

environment by considering different skill levels or

preferences.

 Ensure a competition-free environment.

 Observe groups/individuals: who is engaged, who asks,

and who is holding back.

 Support (girls) to pursue and persist in technology

Engagement

–

Collaboration

Stage 4: The Closing

(4.1) Enable

recognition of

the student’s

progress by

peers, teachers,

and parents

4.1.1: Allow students to present their games in public to

provide a sense of ownership & pride

 (voluntary/mandatory)

 In front of their peers (during the last unit)

 At events (e.g., open house days, final event)

 Sharing (i.e. through a public forum)

 Recap session / ask questions:

o Who will program at home? Tell his/her

friends?

o Highlights/problems, etc.

4.1.2: Make a short quiz

 Discuss the questions at the beginning of the unit with the

whole class

 Define easy questions, e.g., single choice questions

 No teamwork, no grading

 Discuss the questions after the quiz

4.1.3: Evaluate submitted programs

Assessment of:

 Confirmation of achievement of the learning goal(s)

 Use of game design elements

 Program structure (e.g., code statistics, finished

program)

(assessment template sheet)

Engagement

–

Collaboration

Coding –

Structure

